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a b s t r a c t

We derive approximate relations for the propagation velocity and the maximal temperature rise of an
“ideal” 1-D front in a pseudo-homogeneous packed bed reactor (PBR) model with a first order activated
kinetics, accounting for a finite mass Peclet number (PeC ). These relations are compared with known
ccepted 17 April 2009

eywords:
acked bed
oving fronts
aximal temperature rise

approximations for PeC → ∞ and are verified by direct numerical simulations showing a good agreement
within a wide domain of parameters if PeC > PeT , which typically applies for PBRs.

© 2009 Elsevier B.V. All rights reserved.
ront velocity
pproximations

. Introduction

Heterogeneous catalytic packed bed reactors (PBRs) are exten-
ively used in chemical and petrochemical reactors and for
batement of environmental pollutants typically by catalyzing
xothermic reactions (e.g., oxidation, hydrogenation). Such reactors
re known to exhibit thermal fronts propagating in the axial direc-
ion. The maximal temperature rise behind the front (�Tm) and
ront velocity (Vf ) are essential parameters that need to be deter-

ined for proper reactor design. A good design will use conditions
hat will not expel the front from the reactor and lead to extinction.
he fronts are also of significance for design of the reverse-flow
eactor (RFR, see, for example Matros [1] and Eigenberger et al. [2])
nd of the recently proposed loop reactor (LR, Matros [3]) in which
he maximal temperature rise can significantly exceed the adiabatic
emperature rise (�Tad).

The front parameters are also crucial in analysis of a transver-
al pattern formation in PBRs: The temperature (and conversion)
istributions, which are assumed to be uniform across the reactor
ross section in an adiabatic case may undergo symmetry break-

ng in the transversal (normal to the flow) direction (see review
iswanathan et al. [4]). In our recently published study (Nekhamk-

na, Sheintuch [5]) we derived a new criterion which suggests that
planar front can undergo symmetry breaking if the ratio the mass

∗ Corresponding author. Tel.: +972 4 8293561.
E-mail addresses: aermwon@tx.technion.ac.il (O. Nekhamkina),

ermsll@tx.technion.ac.il (M. Sheintuch).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.04.043
to heat Pe numbers is smaller then the ratio of the adiabatic to
maximal temperature rises (PeC/PeT < �Tad/�Tm).

During the last decades significant efforts were directed to
derive approximate relations for the maximal temperature rise and
front velocity (Vf ). In an “ideal” front (propagating with a constant
form in an infinitely long system with complete conversion) these
parameters follow the relations (Wicke, Vortmeyer [6]):

�Tm = �Tad
1 − Vf

1 − LeVf
, Vf = �Tm − �Tad

Le�Tm − �Tad
, (1)

for any PeT , PeC . An inspection of Eq. (1) shows that i) in a station-
ary front the maximal temperature rise is equal to the adiabatic one,
i.e. �Tm = �Tad, ii) in a downstream propagating front the velocity
(Vf > 0) cannot exceed the thermal front velocity Vth = 1/Le, which
corresponds to an infinitely large �Tm, and iii) in an upstream prop-
agating front Vf (< 0) can formally decrease indefinitely while �Tm

is bounded by a limit value (�Tad/Le), i.e.

−∞ < Vf < Vth,
�Tad

Le
< �Tm < ∞ (2)

Note that relations (1), (2) are valid with any value of axial PeT and
PeC , assuming that conversion at the reactor exit is complete.

To form a closed system that will allow to calculate the two
unknown variables (Vf , Tm) we need to couple Eq. (1) with an

additional relation involving the main kinetic, thermodynamic and
transport parameters. The approximate relation for PBRs published
in literature was derived by Kiselev [7,8] for the limiting case
of PeC → ∞ using the narrow reaction zone assumption (Frank-
Kamenetski [9], Zeldovich, Barenblatt [10]). This relation in the

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:aermwon@tx.technion.ac.il
mailto:cermsll@tx.technion.ac.il
dx.doi.org/10.1016/j.cej.2009.04.043
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Nomenclature

A rate constant
B dimensionless exothermicity
cp volume-specific heat capacity
C key component concentration
Cp heat capacity
D dispersion coefficient
Da Damkohler number
E activation energy
f function defined by Eq. (6)
F, G groups defined by Eq. (30)
�H reaction enthalpy
ke effective conductivity
L reactor length
Le Lewis number
PeT , PeC Peclet numbers of heat- and mass dispersion
Ri, S groups defined by Eqs. (38) and (37)
t time
T temperature
u fluid velocities
v auxiliary variable used in Eq. (32)
Vf front velocity
w = y/ym dimensionless temperature
x conversion
y dimensionless temperature

Greek letters
˛ group defined by Eq. (21)
ˇ group defined by Eq. (28)
� dimensionless activation energy
ε porosity
�, � dimensionless coordinate
� density
� dimensionless time

Subscripts
ad adiabatic
e effective value
f fluid
in at the inlet
m maximal
C mass
T temperature
0 reference value

Superscripts

d

T
f
a
d
d
o
n
d
t

f m f
num numerical
appr approximated

imensionless form can be written as following:

(1 + ym/�)2Da exp[ym/(1 + ym/�)]

BPeT (1 − Vf )2
= 1 (3)

he purpose of this study is to derive the approximate relations
or the propagation velocity and the maximal temperature rise of
n ideal 1-D front in a PBR, accounting for a finite but large mass
ispersion. These approximations are verified by comparison with
irect numerical simulations of a 1-D front within a wide domain of

perating conditions. The structure of this paper is as follows: in the
ext section we present a 1-D pseudo-homogeneous PBR model and
erive the approximate relations for front velocity and the maximal
emperature rise, which are verified numerically in Section 3 In con-
ineering Journal 154 (2009) 115–119

cluding remarks we discuss the obtained results and also address
the future implementation of the obtained approximations for esti-
mation of parameters of a loop and a reverse flow reactors, as well
as for prediction of symmetry breaking conditions of a planar 1-D
front.

2. Reactor model and parameters of a planar front

The balance equations of the generic 1-D pseudo-homogeneous
model of a fixed-bed reactor catalyzing a first order reaction of
Arrhenius-kinetics assuming non-catalytic reactor walls may be
written in the following dimensionless form:

∂x

∂�
+ ∂x

∂�
− 1

PeC

∂2x

∂�2
= (1 − x)f (y) (4)

Le
∂y

∂�
+ ∂y

∂�
− 1

PeT

∂2y

∂�2
= B(1 − x)f (y), (5)

f (y) = Da exp
(

�y

� + y

)
(6)

� = 0,
1

PeC

∂x

∂�
= x,

1
PeT

∂y

∂�
= y, � = L̄,

∂x

∂�
= 0,

∂y

∂�
= 0.

(7)

Here conventional notation is used:

x = 1 − C

Cin
, y = �

T − Tin

Tin
, � = z

z0
, � = tu

z0
,

� = E

RTin
, �Tad = (−�H)Cin

(�Cp)f

, B = �
�Tad

Tin
, Da = z0

u
A exp(−�),

Le = (�cp)e

(�cp)f

, PeT =
(�cp)f z0u

ke
, PeC = z0u

εDf
,

We derive now approximations for the maximal temperature rise
and velocity of an “ideal” front, i.e. a front propagating in an
infinitely long system subject to the conditions:

� → −∞, x = 0, y = 0, dx/d� = 0, dy/d� = 0;

� → ∞, x = 1, y = ym, dx/d� = 0, dy/d� = 0; (8)

Assuming a “frozen” solution in a moving coordinate system (� =
� − Vf �) we can rewrite the balance equations in the following form:

(1 − LeVf )y′ − 1
PeT

y′′ = B(1 − x)f (y) (9)

(1 − Vf )x′ − 1
PeC

x′′ = (1 − x)f (y) (10)

Here primes denote derivatives with respect to �. Combining Eqs.
(9) and (10) results in:

(1 − LeVf )y′ − B(1 − Vf )x′ − 1
PeT

y′′ + B

PeC
x′′ = 0 (11)

Integrating this equation by � from −∞ until ∞ while accounting
for boundary conditions (BC) (8) yields:

(1 − LeV )y − B(1 − V ) = 0 (12)
or

ym = B
1 − Vf

1 − LeVf
, Vf = ym − B

Leym − B
(13)
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hich present a non-dimensional form of relations (1). Integrating
q. (11) up to local � with account for (13) yields:

B

PeC
x′ − 1

PeT
y′ = B(1 − Vf )

[
x − y

ym

]
(14)

s was mentioned in Section 1, Kiselev et al. ([7,8]), for the lim-
ting case of negligible mass dispersion (PeC → ∞), derived an
pproximate relation between front velocity and the maximum
emperature rise (3) using a set of two first order ODEs [Eqs. (10)
nd (14) with Pe−1

C = 0] and implementing a narrow reaction zone
ssumption ([9]). In the present study we follow this approach
hile accounting for a finite mass dispersion. As the first step we

liminate the term including x′′ from Eq. (10). For this purpose we
an differentiate Eq. (10) yielding:

1 − Vf )x′′ − 1
PeC

x
′′′ = −x′f (y) + (1 − x)f ′

yy′ (15)

ith account for the function f (y) (6) we obtain

′′ = 1
1 − Vf

[
−x′f (y) + (1 − x)f (y)

(1 + y/�)2
y′
]

− 1
(1 − Vf )PeC

x
′′′

(16)

fter substituting Eq. (4) into Eq. (10) while neglecting terms of
(1/Pe2

C ) we find:

′
[

(1 − Vf ) + f (y)
PeC (1 − Vf )

]
− y′ (1 − x)f (y)

PeC (1 − Vf )(1 + y/�)2
= (1 − x)f (y)

(17)

qs. (14) and (17) form a linear algebraic system with respect to
erivatives x′, y′ yielding

′∼ − (1 − x)f (y)
PeT

[
1 − B(x − y/ym)

PeC/PeT (1 + y/�)2

]
(18)

′∼−B(1−Vf )2
(

x− y

ym

)[
1+ f (y)

PeC (1−Vf )2

(
1− 1 − x

x − y/ym

)]
(19)

ombining these equations we obtain a single first order equation,
hich after introducing a new variable w = y/ym can be written in

he following form:

dx

dw
= p(w)g(w, x)q

(
w, x,

PeC

PeT
, ˛

)
(20)

here

(w) = ymf (ymw)

BPeT (1 − Vf )2
, g(w, x) = 1 − x

w − x
,

(w, x, ˛) = [1 − B(x − w)]/[PeC/PeT (1 + ymw/�)2]
1 + ˛p(w)[1 + g(w, x)]

,

˛ = BPeT

ymPeC
(21)

he appropriate BCs are:

= 0, x = 0; w = 1, x = 1. (22)

n the limiting case PeC → ∞ we have ˛ → 0, q(w, x, ˛) → 1 and
qs. (20)–(22) are reduced to the problem statement considered

n Refs. [7,8], where the desirable relation (3) was obtained as an
ntegral of reduced Eq. (20).
The function g(w, x) has a singularity if (x, w) → 1, however the
imits of g(w, x) and dx/dw are finite:

lim
,x→1

x′
w = p(1)

−x′
w

(1 − x′
w)

1
1 + ˛p(1)[1 − x′

w/(1 − x′
w)]
ineering Journal 154 (2009) 115–119 117

Thus,

x′
w = 1 + p(1) + ˛p(1)

1 + 2˛p(1)
(23)

Now, according to the narrow reaction zone assumption we can
estimate all functions in the right hand side of Eq. (20) around w =
1: For the function g(w, x) we have:

g(w, x) = 1 − x

w − x
� x′

w

x′
w − 1

= 1 + p(1)(1 + ˛)
p(1)(1 − ˛)

or, since p(1) � 1,

g(w, x) = 1 + ˛

1 − ˛
= const(w) (24)

Consider the correction function q(w, x, PeC ) (21) around w = 1,
while neglecting the term proportional to (x − w) in the numerator:

q(w, x, PeC ) � 1
1 + ˛p(w)[1 + (1 + ˛)/(1 − ˛)]

= 1
1 + 2˛/(1 − ˛)p(w)

(25)

Substituting Eqs. (24) and (25) into Eq. (20) we obtain:

dx

dw
= (1 + ˛)p(w)

1 − ˛ + 2˛p(w)
(26)

Integrating this equation we have:

1
1 + ˛

=
∫ 1

0

p(w)
1 − ˛ + 2˛p(w)

dw (27)

Estimating the power of the exponent in p(w) around w = 1:

ymw

1 + ymw/�
� ym

1 + ym/�
+ ˇ(w − 1), ˇ = ym

(1 + ym/�)2
(28)

we obtain

p(w) = F exp
(

ymw

1 + ymw/�

)
� FG exp[ˇ(w − 1)] (29)

where

F = Daym

BPeT (1 − Vf )2
, G = exp

(
ym

1 + ym/�

)
(30)

Substituting (29) in Eq. (27) we get:

1
1 + ˛

= FG

∫ 1

0

exp[ˇ(w − 1)]
1 − ˛ + 2˛FG exp[ˇ(w − 1)]

dw (31)

Introducing a new variable v = exp[ˇ(w − 1)], dv = vˇdw we
obtain

1
1 + ˛

= FG

ˇ

∫ 1

v(0)

dv
1 − ˛ + 2˛FGv

= FG

ˇ

1
2˛FG

log(1 − ˛ + 2˛FGv)|1v(0)

(32)

Assuming that the value of the logarithm at the lower limit is sig-
nificantly less then that at the upper limit we obtain

1
1 + ˛

= 1
2˛ˇ

log[1 + ˛(2FG − 1)] � 1
2˛ˇ

log(1 + 2˛FG) (33)

and finally
2˛

1 + ˛
= 1

ˇ
log(1 + 2˛FG) (34)

Eq. (34) coupled with relation (13) form a closed system with
respect to two unknown parameters: ym and Vf . An inspection of
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Fig. 1. (Color online) Comparison of approximate [Eqs. (13) and (34), lines] and
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Fig. 2. (Color online) Comparison of approximate [Eqs. (13) and (34), lines] and
numerically calculated (symbols) dimensionless temperature rise (ym/B, a) and
front velocity (Vf , b) with varying dimensionless adiabatic temperature rise B.
Da = 4 × 10−8 (stars, solid lines), 4 × 10−7 (triangulars, dashed lines), PeC = 200,
other parameters as in Fig. 1.
umerically calculated (points) dimensionless temperature rise (ym/B, a, c) and front
elocity (Vf , b, d) with varying mass Peclet (PeC ). B = 30 (a, b), 300 (c, d). Other
arameters are: Le = 800, PeT = 200, Da = 4 × 10−8, � = 27.

q. (34) shows that in the limiting case ˛ → 0 (i.e. PeC → ∞) this
quation is reduced to

� FG

ˇ
(35)

hich is equivalent to Eq. (3). With moderate and large ˛ Eq. (34)
an be reduced to

2˛

1 + ˛
= 1

ˇ
log(2˛F) + 1 + ym

�
(36)

. Validation of the proposed approximations

To verify approximate relations derived above we simulated
odel (4), (5) in a wide domain of operating conditions: The max-

mal temperature rise and front velocity essentially depend on the
ass Peclet number for both a downstream—[small B, Fig. 1 (a,b)]

nd an upstream—[large B, Fig. 1(c,d)] propagating fronts, tending to
he corresponding asymptotic values with PeC → ∞. A reasonable
greement between the approximated (denoted by lines) and the

imulated (symbols) results was obtained with moderate and large
eC (PeC ≥ PeT , Figs. 1–3); note that this is the physically feasible
peration domain for PBRs. The divergence between the approxi-
ated and simulated results increases with decreasing PeC/PeT .

Fig. 3. (Color online) Comparison of approximate [Eqs. (13) and (34), lines] and
numerically calculated (symbols) dimensionless temperature rise (ym/B, a, c) and
front velocity (Vf , b, d) with varying Peclet number with equal PeC = PeT ; other
parameters as in Fig. 1.
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Fig. 4. (Color online) Comparison of approximate relations (37) showing numeri-
cally calculated complexes Ri, i = 1, 2, 3 vs S [Eq. (38)), symbols connected by dashed
lines]. B = 100, other parameters as in Fig. 1. Dotted line shows Ri = S.

Fig. 5. Comparison of approximate [relations (13), (34)] and simulated values of
the dimensionless temperature rise (ym/B, a) and front velocity (Vf , b). PeT = 200,
other parameters: Da = 4 × 10−8, � = 27, PeC = 75 − 104, B = 30 (©), 40 (♦), 60 (�),
100 (�); 300 (∗); Da = 4 × 10−7, � = 27, PeC = 200, B = 30–300 (�); Da = 4 × 10−8,
� = 27, PeC = 200, B = 30–300 (x); Da = 4 × 10−8, � = 35, PeC = 75 − 104, B = 100
(�). Dashed lines show the lines of perfect agreement.

[

[

ineering Journal 154 (2009) 115–119 119

Relations (34)–(36), which will be used for comparison with
numerical results, can be rewritten as

S ≡ 2˛

1 + ˛
= Ri, i = 1, 2, 3 (37)

where

R1= 1
ˇ

log(1+2˛FG), R2= 2˛FG

ˇ(1+˛)
, R3= 1

ˇ
log(2˛F)+1+ym

�
(38)

The calculated results, expressed as the complexes Ri vs S (Fig. 4),
follow Eq. (34) in a wide domain of ˛. As expected, relation (35) can
be successfully applied with small ˛, while relation (36) is valid for
large ˛.

The obtained results are summarized in Fig. 5 showing the com-
parison between the approximated and the simulated parameters.
The agreement is satisfactory over a wide domain of parameters
suggesting that approximation (34) is well validated.

4. Conclusion remarks

We proposed approximate relations for the maximal tempera-
ture rise and velocity of a 1-D ideal moving front in a PBR catalyzing
a first-order activated reaction. These relations are validated in a
wide domain of parameters with PeC ≥ PeT , which is a feasible con-
dition for commercial reactors. The obtained relations are both of
theoretical and of practical interest. The proposed approach can
be extended to predict the parameters and the operating domain
boundaries of the loop reactor (i.e. accounting for effect of non-
ideal boundary conditions, Nekhamkina and Sheintuch [11]) and
the parameters of the reverse flow reactor in the sliding regimes
(following Matros [3]). Moreover, the obtained approximations can
be extended to the case of a curvilinear front, which in turn, allow to
formulate the symmetry breaking condition of a 1-D planar front
using a bifurcation condition dVf /dKK=0 = 0, where K is the local
front curvature. The last issue will be addressed in the future pub-
lication.
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